Automatic sleep staging: A computer assisted approach for optimal combination of features and polysomnographic channels

نویسندگان

  • Sirvan Khalighi
  • Teresa Sousa
  • Gabriel Pires
  • Urbano Nunes
چکیده

To improve applicability of automatic sleep staging an efficient subjectindependent method is proposed with application in sleep-wake detection and in multiclass sleep staging (awake, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep). In turn, NREM is further divided into three stages denoted here by N1, N2, and N3. To assess the method, polysomnographic (PSG) records of 40 patients from our ISRUC-Sleep dataset, which was scored by an expert clinician in the central hospital of Coimbra, are used. To find the best combination of PSG signals for automatic sleep staging, six electroencephalographic (EEG), two electrooculographic (EOG), and one electromyographic (EMG) channels are analyzed. An extensive set of feature extraction techniques are applied, covering temporal, frequency and timefrequency domains. The maximum overlap wavelet transform (MODWT), a shift invariant transform, was used to extract the features in time-frequency domain. The extracted feature set is transformed and normalized to reduce the effect of extreme values of features. The most discriminative features are selected through a two-step method composed by a manual selection step based on features’ histogram analysis followed by an automatic feature selector. The selected feature set is classified using support vector machines (SVMs). The system achieved the best performance by combining 6 channels (C3, C4, O1, left EOG (LOC), right EOG (ROC) and chin EMG (X1)) for sleep-wake detection, and 9 channels (C3, C4, O1, O2, F3, F4, LOC, ROC, X1) for multiclass sleep staging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers

Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...

متن کامل

Automatic sleep scoring: A search for an optimal combination of measures

OBJECTIVE The objective of this study is to find the best set of characteristics of polysomnographic signals for the automatic classification of sleep stages. METHODS A selection was made from 74 measures, including linear spectral measures, interdependency measures, and nonlinear measures of complexity that were computed for the all-night polysomnographic recordings of 20 healthy subjects. T...

متن کامل

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

Repetitive Arm Movements During Sleep: A Polysomnographic Assessment

Sleep-related movement disorders should be differentiated from parasomnias, sleep-associated behavioral disorders, and epilepsy. Polysomnography (PSG) is the gold standard in evaluating such disorders. Periodic leg movement disorder during sleep (PLMS), hypnic jerks, bruxism, rhythmic movement disorder, restless legs syndrome, and nocturnal leg cramps have broadly been discu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2013